Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

(S)-2-(1H-Imidazol-1-yl)succinic acid

Jing-Mei Xiao

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: xjm_cool@163.com

Received 21 December 2008; accepted 23 April 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(C-C) = 0.005$ Å; R factor = 0.050; wR factor = 0.151; data-to-parameter ratio = 9.4.

The title compound, $C_7H_8N_2O_4$, is a zwitterion, [formal name = (S)-3-carboxy-2-(imidazol-3-ium-1-yl)propanoate], in which the deprotonated negatively charged carboxylate end shows almost identical C-O bond distances [1.248 (4) and 1.251 (4) Å] due to resonance. The molecules are involved in intermolecular O-H···O and N-H···O hydrogen bonds, which define a tightly bound three-dimensional structure.

Related literature

For the use of imidazol-1-ylalkanoic acids as probes to determine the intracellular and extracellular pH and cell volume by ¹H NMR, see: López *et al.*(1996). For the preparation of the title compound, see: Bao *et al.* (2003).

Experimental

Crystal data C₇H₈N₂O₄

 $M_r=184.15$

Data collection

 $\begin{array}{ll} \mbox{Rigaku Mercury2 diffractometer} & 8489 \mbox{ measured reflections} \\ \mbox{Absorption correction: multi-scan} & 1110 \mbox{ independent reflections} \\ \mbox{($CrystalClear$; Rigaku, 2005)} & 952 \mbox{ reflections with $I > 2\sigma(I)$} \\ \mbox{$T_{\rm min} = 0.97$, $T_{\rm max} = 0.98$} & R_{\rm int} = 0.053 \\ \end{array}$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.050 & 118 \ {\rm parameters} \\ WR(F^2) = 0.151 & {\rm H-atom\ parameters\ constrained} \\ S = 1.12 & \Delta\rho_{\rm max} = 0.19\ {\rm e\ \mathring{A}^{-3}} \\ 1110\ {\rm reflections} & \Delta\rho_{\rm min} = -0.23\ {\rm e\ \mathring{A}^{-3}} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
$ \begin{array}{c} N2-H2\cdots O2^{i} \\ O3-H3C\cdots O1^{ii} \end{array} $	0.86	1.91	2.716 (4)	155
	0.86	1.71	2.572 (3)	177

Symmetry codes: (i) x - 1, y, z; (ii) x, y + 1, z.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2234).

References

Bao, W., Wang, Z. & Li, Y. (2003). J. Org. Chem. 68, 591–593.
López, P., Zaderenko, P., Balcazar, J. L., Fonseca, I., Cano, F. H. & Ballesteros, P. (1996). J. Mol. Struct. 377, 105–112.
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supplementary m	aterials	

Acta Cryst. (2009). E65, o1157 [doi:10.1107/S1600536809015220]

(S)-2-(1H-Imidazol-1-yl)succinic acid

J.-M. Xiao

Comment

Imidazol-1-ylalkanoic acids are used as new probes to determine the intracellular and extracellular pH and cell volume by ¹H NMR. (López *et al.*, 1996). In this report we present the structure of (*S*)-2-(1*H*-imidazol-1-yl)succinic acid. As shown in Fig. 1, the title compound C₇H₈N₂O₄ exists in the form of an inner salt where the unprotonated, negatively charged carboxylato end shows almost identical C-O bond distances (1.248 (4) and 1.251 (4)Å respectively) due to resonance.. The molecules are involved in intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) which define a tightly bound 3D structure.

Experimental

The ligand was prepared according to a literature method (Bao *et al.*, 2003). A formaldehyde water solution (36%, 1.67 g) and a glyoxal water solution (32%, 3.62 g) were mixed in a 50 ml, three-necked flask provided with a stirrer and a reflux condenser. While the mixture was heated at 50 °C with stirring, a mixture of *L*-2-aminosuccinic acid (2.66 g, 0.02 mol), ammonia solution (28%, 1.21 g) and sodium hydroxide solution (10%, 8 g) was added in small portions during 0.5 h. After the mixture was stirred for an additional 8 h at 50 °C, the cooled mixture was acidified to pH=3 with concentrated hydrochloric acid. After stirring for 30 min, the suspension was filtered. The resulting solid was washed with H₂O and dried in vacuum over P2O5 at room temperature. Colourless crystals suitable for X-ray diffraction were obtained from a solution of 100 mg in 15 ml H₂O by slow evaporation after one month.

Refinement

Positional parameters of all the H atoms except for H3C were calculated geometrically and the H atoms were set to ride on the C and N atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C or N). The carboxyl H3C was initially refined and subsequently allowed to ride with Uiso(H) = 1.5Ueq(O). Due to the abscence of anomalous diffraction effects, Friedel pairs were merged.

Figures

Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

supplementary materials

(S)-3-carboxy-2-(imidazol-3-ium-1-yl)propanoate

Crystal data

 $C_7H_8N_2O_4$ F(000) = 384

 $M_r = 184.15$ $D_{\rm x} = 1.480 \; {\rm Mg \; m}^{-3}$

Orthorhombic, P2₁2₁2₁ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: p 2ac 2ab Cell parameters from 2123 reflections

a = 7.3212 (16) Å $\theta = 2.8-27.4^{\circ}$ b = 7.9193 (16) Å $\mu = 0.12 \text{ mm}^{-1}$ T = 293 Kc = 14.254 (3) Å $V = 826.4 (3) \text{ Å}^3$ Prism, colorless

Z = 4 $0.25\times0.20\times0.18~mm$

Data collection

Rigaku Mercury2 1110 independent reflections diffractometer

Radiation source: fine-focus sealed tube 952 reflections with $I > 2\sigma(I)$

graphite $R_{\rm int} = 0.053$

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$ CCD_Profile_fitting scans

Absorption correction: multi-scan $h = -9 \rightarrow 9$ (CrystalClear; Rigaku, 2005) $T_{\min} = 0.97$, $T_{\max} = 0.98$ $k = -10 \rightarrow 10$ $l = -18 \rightarrow 18$

8489 measured reflections

Refinement

Primary atom site location: structure-invariant direct Refinement on F^2

Least-squares matrix: full Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring $R[F^2 > 2\sigma(F^2)] = 0.050$

 $wR(F^2) = 0.151$ H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0852P)^2 + 0.2196P]$ S = 1.12

where $P = (F_0^2 + 2F_c^2)/3$

1110 reflections $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \rho_{\text{max}} = 0.19 \text{ e Å}^{-3}$ 118 parameters $\Delta \rho_{min} = -0.23 \text{ e Å}^{-3}$ 0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

supplementary materials

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	\boldsymbol{x}	У	z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.9679 (4)	0.2336 (4)	0.6099 (2)	0.0299 (7)
C2	0.9073 (4)	0.4110(4)	0.6415 (2)	0.0309(7)
H2A	0.9846	0.4450	0.6943	0.037*
C3	0.9360 (5)	0.5376 (4)	0.5624(2)	0.0367 (7)
Н3А	1.0554	0.5197	0.5346	0.044*
Н3В	0.8447	0.5193	0.5142	0.044*
C4	0.9226 (5)	0.7177 (4)	0.5977 (2)	0.0378 (7)
C5	0.6549 (5)	0.4474 (5)	0.7626 (3)	0.0493 (10)
H5	0.7259	0.4826	0.8130	0.059*
C6	0.4741 (6)	0.4230 (7)	0.7635 (3)	0.0640 (13)
Н6	0.3962	0.4380	0.8144	0.077*
C7	0.5708 (5)	0.3653 (5)	0.6236 (3)	0.0422 (8)
H7	0.5719	0.3333	0.5608	0.051*
N1	0.7172 (3)	0.4110(3)	0.67364 (18)	0.0314 (6)
N2	0.4268 (4)	0.3725 (4)	0.6766 (2)	0.0507(8)
H2	0.3175	0.3487	0.6589	0.061*
O1	0.8474 (4)	0.1251 (3)	0.5944 (2)	0.0507(7)
O2	1.1355 (3)	0.2163 (3)	0.59668 (16)	0.0409 (6)
O3	0.9107 (5)	0.8279(3)	0.52925 (19)	0.0584 (9)
Н3С	0.8908	0.9290	0.5489	0.070*
O4	0.9181 (5)	0.7543 (4)	0.67883 (19)	0.0638 (9)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0279 (14)	0.0283 (15)	0.0334 (15)	0.0011 (12)	-0.0001 (12)	0.0036 (13)
C2	0.0315 (15)	0.0274 (15)	0.0338 (15)	-0.0038 (13)	0.0014 (13)	-0.0015 (12)
C3	0.0455 (18)	0.0265 (15)	0.0382 (16)	0.0006 (15)	0.0092 (16)	0.0019 (12)
C4	0.0396 (17)	0.0287 (15)	0.0452 (18)	0.0001 (15)	0.0057 (15)	0.0020 (14)
C5	0.0390 (19)	0.064(3)	0.045(2)	-0.0105 (19)	0.0083 (16)	-0.0169 (19)
C6	0.055(2)	0.077(3)	0.061(2)	-0.014(2)	0.024(2)	-0.022 (3)
C7	0.0345 (16)	0.0433 (19)	0.0486 (18)	0.0050 (17)	-0.0069 (16)	-0.0066 (15)
N1	0.0293 (13)	0.0301 (13)	0.0349 (14)	-0.0001 (11)	-0.0025 (11)	-0.0032 (11)
N2	0.0310 (14)	0.0487 (18)	0.072(2)	-0.0010 (15)	-0.0041 (16)	-0.0126 (16)
O1	0.0411 (13)	0.0241 (12)	0.087(2)	-0.0010 (10)	0.0034 (14)	-0.0071 (13)
O2	0.0350 (12)	0.0383 (13)	0.0494 (14)	0.0044 (10)	0.0047 (11)	-0.0035 (11)
O3	0.090(2)	0.0294 (13)	0.0560 (15)	0.0060 (15)	0.0122 (16)	0.0052 (11)
O4	0.106(3)	0.0381 (14)	0.0472 (15)	0.0013 (17)	-0.0113 (17)	-0.0097 (12)

supplementary materials

Geometric parameters (Å, °)					
C1—O2	1.249 (4)		C5—C6		1.338 (6)
C1—O1	1.251 (4)		C5—N1		1.378 (4)
C1—C2	1.541 (4)		C5—H5		0.9300
C2—N1	1.465 (4)		C6—N2		1.347 (6)
C2—C3	1.522 (4)		C6—H6		0.9300
C2—H2A	0.9800		C7—N2		1.299 (5)
C3—C4	1.516 (4)		C7—N1		1.338 (4)
С3—Н3А	0.9700		C7—H7		0.9300
C3—H3B	0.9700		N2—H2		0.8600
C4—O4	1.193 (4)		O3—H3C		0.8601
C4—O3	1.312 (4)				
O2—C1—O1	126.3 (3)		O3—C4—C3		112.6 (3)
O2—C1—C2	115.3 (3)		C6—C5—N1		107.9 (4)
O1—C1—C2	118.3 (3)		C6—C5—H5		126.1
N1—C2—C3	111.3 (3)		N1—C5—H5		126.1
N1—C2—C1	111.4(2)		C5—C6—N2		106.7 (3)
C3—C2—C1	110.1 (2)		C5—C6—H6		126.6
N1—C2—H2A	108.0		N2—C6—H6		126.6
C3—C2—H2A	108.0		N2—C7—N1		109.1 (3)
C1—C2—H2A	108.0		N2—C7—H7		125.4
C4—C3—C2	111.4 (3)		N1—C7—H7		125.4
C4—C3—H3A	109.3		C7—N1—C5		106.4 (3)
C2—C3—H3A	109.3		C7—N1—C2		126.5 (3)
C4—C3—H3B	109.3		C5—N1—C2		127.1 (3)
C2—C3—H3B	109.3		C7—N2—C6		109.9 (3)
H3A—C3—H3B	108.0		C7—N2—H2		125.1
O4—C4—O3	123.8 (3)		C6—N2—H2		125.1
O4—C4—C3	123.6 (3)		C4—O3—H3C		112.9
Hydrogen-bond geometry (Å, °)					
D— H ··· A		<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
N2—H2···O2 ⁱ		0.86	1.91	2.716 (4)	155
O3—H3C···O1 ⁱⁱ		0.86	1.71	2.572 (3)	177
Symmetry codes: (i) $x-1$, y , z ; (ii) x , $y+1$, z .					

Fig. 1

